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A system of nonlinear equations whose solution determines the dependence of the equilibrium concentration of
vacancies on the molecular length of a chain with occupied and unoccupied sites has been obtained using the
variational method. Numerical solution of this system made it possible to calculate the free energy, the ther-
modynamic Gibbs potential, and the deforming force as functions of the macroscopic deformation of the lin-
ear chain. As a result, a theoretical diagram of extension and compression for a one-dimensional model has
been constructed.

In recent times, it has become possible to construct a statistical theory of deformed molecular crystal lattices
with defects [1, 2], to which one cannot, in principle, apply the traditional methods of elasticity theory in studying a
microstructure, since the foundation of this theory is formed by the notion of a continuous, i.e., model, medium.
Therefore, the use of these methods is confined to the region of small deformations beyond which we have an un-
solved problem of description of the nonlinear deformation of real bodies (with defects) with allowance for their plas-
ticity and the actual absence of the continuity of a material. For practical implementation of the possibilities of the
developed two-level molecular-statistical description of crystal specimens with vacancies it is desirable to have an ex-
actly solvable statistical model whose properties can be investigated by analytical methods. Since the state of a de-
formed crystal with vacancies is described in the general case by a fairly complex nonlinear integral equation with
field parameters (the field of microscopic deformation tensor and the concentration field of unoccupied lattice sites),
for solution of the problem posed we confine ourselves here, just as previously [2, 3], to consideration of uniformly
deformed linear specimens subjected to uniaxial extension and compression.

Description of the One-Dimensional Statistical Model of a Deformed Specimen and Obtaining the Varia-
tional Equation. Earlier [1–3], within the framework of the two-level molecular-statistical approach [4] whose founda-
tion is formed by the method of conditional distributions [5], the method of Bogolyubov, Born, Green, Kirkwood, and
Yvon (BBGKY), and the method of thermodynamic functionals [6], we developed a statistical model of uniaxial de-
formation of a molecular crystal with thermal vacancies. It represents a molecular chain of length L consisting of M
sites at which N molecules are statistically distributed, and their interaction is described by the Lennard-Jones potential.
Expressions [3] were obtained for the lowest distribution functions of particles (molecules) and the free energy as a
function of the concentration n = N/M and the uniform microdeformation λ of each link of the chain of length R =
L/M, which are the internal parameters of the model. To determine the equilibrium values of the parameters n and λ
we use the extremum principle of thermodynamic potentials of a system of many particles. Taking into account the
retained number N of molecules in a deformed chain, we vary the free energy by n and λ for a fixed value of the
molecular length
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i.e., for a certain value of the length L of the chain. Here R0 is the length of the undeformed link playing the role of
a microcell for a one-dimensional chain and l is the one-dimensional analog of molecular volume in three-dimensional
specimens. Expression (1) is the coupling equation for the internal parameters n and λ of the model; therefore, in what
follows we will consider that λ is an n-dependent variable determined as

λ = (l ⁄ R0) n − 1 . (2)

The expression obtained in [3] for free energy on condition that L = const will be rewritten in a form con-
venient for subsequent variation:

F (n, λ) = Lf ⁄ R , (3)

where
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The quantities ϕ1, α1, and β1 involved in (4) are the coefficients of expansion, in a Taylor series, of the av-
erage-force potentials [4, 5] which describe the averaged interaction of a singled-out particle (molecule) with particles
statistically distributed in the vicinity of the neighboring site of the chain (with allowance for the subsystem of vacan-
cies). These coefficients and the function z are related, by a nonlinear equation, to the coefficients Φ0, a, and b of an
analogous expansion of the Lennard-Jones potential in small deviations of x of particles from their sites [3, 7].

Having varied (3) by the concentration n with account for the coupling equation (2), we obtain
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where ∂R ⁄ ∂n = l, ∂R ⁄ ∂λ = R0, and dλ ⁄ dn = l ⁄ R0 = (1 + λ)/n.
Next, we take into account the fact that the concentration of vacancies c = 1 − n is very low in the crystalline

state (of the order of 10−5–10−3) and use the first approximation (α1 = α0 F a) of the iteration method [3]. As a re-
sult, the system of equations from [3, 7] is simplified and transformed to a closed system of four equations for ϕ1,
β1, β0, and z:
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After computation of the derivatives ∂f ⁄ ∂n and ∂f ⁄ ∂λ with account for expression (4) and system (6)–(9) and
their substitution into (5), we write the variational equation in explicit form:
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It is noteworthy that, in computation of the derivative ∂β1
 ⁄ ∂λ, we have performed implicit differentiation of

the transcendental equation (6).
With account for the explicit expressions for the derivatives (11)–(20), the variational equation (10) represents

a fairly complex nonlinear equation for whose numerical solution we have employed the Mathematica 3.0 software
product. As a result of its solution, we have completed the planned complex program on statistical modeling of the
process of uniform deformation of a molecular chain (one-dimensional model of uniaxial extension and compression)
with allowance for the interaction between the nearest neighbors in the chain and the correlated distribution of particles
and vacancies at the chain sites with simultaneous calculation, in the Gauss approximation, of single- and two-particle
distribution functions of particles in the vicinity of the chain sites.

Procedure of Numerical Calculation of the Parameters of the Model and Construction of the Diagram
of Extension and Compression. For the molecular chain of length L containing N molecules distributed at M sites
(M > N) and for prescribed values of the set of the system’s external parameters, which includes the dimensionless
temperature θ, the molecular length l = L/N (analog of molecular volume), and the length R0 = L0

 ⁄ M0 of an under-
formed link of the chain, we have selected the n-concentration interval corresponding to the region of obviously crys-
talline state n 2 [0.9; 1]. Using the coupling equation (2), we have determined the interval of permissible values of
the microdeformations λ of the molecular chain. Next, for each pair of n and λ values we have calculated three co-
efficients of expansion of the Lennard-Jones potential (Φ0, a, and b) and have graphically solved the transcendental
variational equation (10) (F(n, λ) = 0) in relation to the sought equilibrium value of the concentration n. Simultane-
ously we have calculated three coefficients of expansion of the average-force potential (ϕ1, α1, and β1), the auxiliary
correlator z, and all the derivatives involved in the variational equation. The process of its solution is illustrated by
the curves given in Fig. 1 for prescribed values of the temperature θ and the molecular length l. The solution of the
nonlinear equation that determines the equilibrium value of the concentration n (and the corresponding microdeforma-
tion λ) is the point of intersection of the plot of the function F(n, λ(n)) and the axis of the concentration c =
1 − n.

From the results of numerical solution of the variational equation, we have obtained the dependences of the
equilibrium values of the concentration of vacancies c and the microdeformation λ and the corresponding free energy
f/n and thermodynamic Gibbs potential g per particle of a molecular chain on its length l; these dependences are pre-
sented in Fig. 2. It is seen that the microdeformation λ depends on l linearly, in practice (Fig. 2a). However, the
growth in the concentration c of vacancies under deformation of the chain is described by a nonlinear function of l
(Fig. 2b), which, as is well known, contributes to the appearance of dislocations in the specimens in real deformation

Fig. 1. Dependences of the function F(n, λ) on the concentration of vacancies
c = µc∗  (µ is the scale factor), obtained with account for the coupling equation
(2) for fixed parameters R0 = 1 and θ = 1; 1) l = 0.98 and µ = 10−10; 2) 1.0
and 10−8; 3) 1.1 and 10−5.
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processes; these dislocations in turn lead to an increasing influence of plastic deformations. As a result, the process of
linear elastic deformation must gradually change to the stage of nonlinear deformation, which will change to the stage
of plastic deformations and fluidity of the material with increase in the chain length and vacancy concentration.

Therefore, theoretical construction of the diagram of deformation of a specimen, i.e., searching for the depend-
ence of the stress σ on the value of the relative macrodeformation ε, is a logically successive and final step in crea-
tion of the statistical theory of elasticity. Since deformation usually occurs under isobaric-isothermal external conditions
in the experiments, for successive description of the structural, thermodynamic, and mechanical properties of macro-
scopic systems it is convenient to employ the thermodynamic Gibbs potential rather than free energy (Fig. 2c). For the
one-dimensional case considered here, the thermodynamic Gibbs potential is determined as follows:

G = F (L) + p0
∗
L , (21)

where p0
∗  is a fixed value of the one-dimensional analog of the medium’s external pressure, i.e., of the force ensuring

the length L = L0 of the chain of N molecules. For convenience of comparison to the three-dimensional case this force
is denoted as the pressure (p0

∗ ), whereas the corresponding deforming force is denoted as the stress (σ∗ ). Since the free
energy is F = fN/n and L is equal to lN, it is more convenient to employ the intensive quantity g = G/N = f ⁄ n + p0

∗ l
(chemical potential) instead of the extensive characteristic represented by the potential G. The analog of normal stress
σ∗ , i.e., the deforming force, is found from the formula
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The relative macrodeformation ε of the chain will be expressed by the molecular length l:

ε = (L − L0) ⁄ L0 = (l − l0) ⁄ l0 . (23)

Fig. 2. Microdeformation λ of the chain links (a), concentration of unoccupied
sites c (b), and equilibrium free energy f/n (c) and thermodynamic Gibbs po-
tential g (d) per particle vs. molecular length l for fixed parameters R0 = 1 and
θ = 1.
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As a result, for the deforming force σ∗  we obtain
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The dependences of the quantity G = gN, i.e, the thermodynamic Gibbs potential and the deforming force
σ∗  (24), on the molecular length l, constructed with the use of the Mathematica 3.0 software product, are presented in
Figs. 2a and 3. The left-hand branch of the potential (Fig. 2d) corresponds to the compression of the specimen,
whereas the right-hand branch corresponds to its extension. A symmetric, in practice, parabolic portion of this curve
in the vicinity of the minimum of the function g(l) determines the region of elastic deformations described by Hooke’s
law. Next, as the deformation increases, the plot g(l) gradually reaches a virtually linear portion, for which σ∗  = const
according to (22). The form of σ∗  as a function of l is in good agreement with the classical curve of deformation in
uniaxial extension and compression of linear specimens. Regions resembling the corresponding portions of elastic and
plastic deformations and of fluidity (σ∗  = const) on the experimental diagrams of stress and deformation are clearly
tracked on the right-hand branch corresponding to the extension of the specimen (see Fig. 3).

The results obtained enable us to hope that the statistical theory of elasticity under development will allow a
complex description of the structural, thermodynamic, and mechanical properties not only of one-dimensional chains,
which is topical at present (in connection with the interest expressed in recent times in molecular chains of different
kinds), but also of plane and three-dimensional macroscopic specimens. The properties of such specimens are of im-
portance for traditional problems of elasticity theory.

NOTATION

a and b, coefficients of expansion of the Lennard-Jones potential; c, concentration of vacancies; F(n, λ), no-
tation for the left-hand side of the variational equation; F, free energy of a deformed molecular chain; f, free energy
per microcell (or site of the chain); G, thermodynamic Gibbs potential; g, thermodynamic Gibbs potential per particle;
k, Boltzmann constant; L and L0, length of a deformed and undeformed specimen respectively; l and l0, molecular
length of a deformed and undeformed link of the chain; T, absolute temperature; M and M0, number of microcells into
which the entire volume of a deformed and an undeformed system is mentally broken; N, number of particles in the
system; n, concentration of molecules in the chain; p0

∗ , one-dimensional analog of external pressure in the initial equi-
librium undeformed state of a molecular chain; R and R0, length of a link of a deformed and undeformed chain; x,
coordinate of a particle (molecule) reckoned from the center of the cell (link) of an undeformed chain; z, average
value of the Mayer function; α0 and β0 and α1 and β1, coefficients of expansion of the average-force potentials ϕ0(x)
and ϕ1(x); ε, relative macrodeformation of the chain; ε′, depth of the potential well for the Lennard-Jones potential;
θ = kT/ε′, dimensionless temperature; λ, relative deformation of the chain links; σ, normal stress; σ∗ , one-dimensional
analog of normal stress, i.e., deforming force; Φ0, coefficient of expansion (free term) of the pair intermolecular Len-
nard-Jones potential Φ; ϕ(x), potential of average forces of interaction of particles; ϕ0 and ϕ1, coefficients of expan-
sion of the average-force potentials ϕ0(x)  and ϕ1(x). Subscripts: *, analog of the corresponding quantity in the
three-dimensional case.

Fig. 3. Diagram of extension and compression of a one-dimensional molecular
chain.
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